Analyses from a Phase 2 Trial of the Efficacy and Safety of Bardoxolone Methyl in Patients with Autosomal Dominant Polycystic Kidney Disease: The PHOENIX Study

Pablo E. Pergola, MD, PhD1; Gerald B. Appel, MD2; Ahmed M. Awad, DO3; Judith A. Betts, MD4; Geoffrey A. Block, MD5; Melanie P. Chin, PhD6; Lesley A. Inker, MD7; Colin J. Meyer, MD8; Anjay Rastogi, MD, PhD9; Dana V. Rizk, MD10; Kevin Schroeder, MD10; Arnold L. Silva, MD, PhD11

1Renal Associates PA, San Antonio, TX; 2Columbia University Medical Center, New York, NY; 3Clinical Research Consultants, LLC, Kansas City, MO; 4Research Management Inc., Austin, TX; 5DermVista Dermatology, Denver, CO; 6Reata Pharmaceuticals, Irving, TX; 7Tufts Medical Center, Boston, MA; 8University of California at Los Angeles Medical Center, Los Angeles, CA; 9University of Alabama at Birmingham, Birmingham, AL; 10Ramming-Davis Clinical Research, Columbus, OH; 11Boise Kidney and Hypertension Institute, Meridian, ID

BACKGROUND AND RATIONALE

Through induction of Nrf2 and suppression of NF-κB, Bard targets common pro-inflammatory and fibrotic pathways that contribute to GFR loss in CKD8

• Despite diverse etiologies, inflammation is a common mechanism underlying the development and progression of chronic kidney disease (CKD)8

• Bard improves kidney function by increasing filtration surface area and by reducing inflammation, remodeling, and fibrosis in multiple models of CKD and ADPKD8

• In 12 clinical trials that enrolled over 2,600 patients, Bard increased eGFR8-11

• Bard reduced risk of kidney failure outcomes in patients with type 2 diabetes and stage 4 CKD in BEACON11

Role of Bard in autosomal dominant polycystic kidney disease (ADPKD)

• ADPKD affects approximately 400,000 people and is leading inheritable cause of kidney failure in the US12

• Cyst formation and growth trigger pro-inflammatory and pro-fibrotic pathways, resulting in progressive loss of kidney function13

• Markers of inflammation (e.g., MCP-1) are higher in human ADPKD renal cyst cell lines (WT 9-7, WT 9-12) than in normal HK-2 human proximal tubule cell line. Bard increases Nrf2 activity (NQO1) and suppresses MCP-1 in ADPKD renal cyst cell lines (∗ p < 0.05; *** p < 0.001)

Phase 2 PHOENIX trial was initiated to determine whether Bard improves kidney function in patients with ADPKD

PHOENIX STUDY DESIGN

• Phase 2, open-label, multi-center, US-only trial (NCT03366337)

• Four separate cohorts of patients with ADPKD, IgAN, T1D CKD, or FSGS

• Targeted enrollment of 25 to 30 patients per cohort

• Primary endpoint: change in eGFR from baseline at Week 12

• Key eligibility: eGFR ≥ 30 to ≤ 90 mL/min/1.73 m2, 18-65 years old; genetic confirmation of PKD1 mutation

BASELINE CHARACTERISTICS

- Enrolled 31 patients and 28 (90%) completed treatment through Week 12
- Historical eGFR data from 3 years prior to enrollment collected for 2931 patients
- Average annual loss of eGFR of 4.8 mL/min per study entry
- Bard treatment resulted in significant eGFR increase of 9.3 mL/min/1.73 m2 at Week 12
- Average increase represents recovery of two prior years of loss based on historical data

Efficacy: Change in eGFR

• Bard treatment resulted in significant eGFR increase of 9.3 mL/min/1.73 m2 at Week 12
• 27/28 (96%) patients with Week 12 data had increases from baseline in eGFR

UACR to Creatinine Ratio

• Patients had normal to near-normal levels of UACR at baseline
• Bard did not change urinary albumin despite the large increase in eGFR

SAFETY: ADVERSE EVENTS

• No treatment-related serious adverse events
• 1 patient (3%) discontinued prematurely due to Bard-related AE (fatigue)
• AEs were generally mild to moderate in intensity
• Most commonly reported AE was muscle spasms, which were associated with reductions in creatinine kinase

CONCLUSION

• Bardoxolone methyl significantly improved eGFR (+9.3 mL/min/1.73 m2) in patients with ADPKD that historically declined −4.8 mL/min/1.73 m2 annually

• Profile of unchanged albuminuria is inconsistent with injury due to increased intraglomerular pressure

• Bard was well-tolerated without any drug-related SAEs, changes in blood pressure, or evidence of fluid overload

FUTURE DIRECTIONS

• Increases in eGFR observed in six distinct patient populations following Bard treatment
• Long-term eGFR increases of one to two years observed in three patient populations
• eGFR improvement post-withdrawal observed in two patient populations
• Acute changes in eGFR correlate with durable response and retained eGFR benefit
• Planning to advance ADPKD program into pivotal Phase 3 study in 2019

• Bard is also currently being studied in:
 - CARDINAL: Phase 2b study in patients with Alport syndrome
 - AVAYME: Phase 3 outcomes study in Japanese patients with diabetic CKD

REFERENCES

1 Ruiz et al. Kidney Int. 2013, 83:1029-1041
3 Ding et al. Kidney Int 2013, 83: 845-54
5 Norby and T orres. Seminars in Dialysis. 2000, 13(1): 30-35
7 Executive D1 et al. Kidney Int 2013, 83:845-54
8 Norby and T orres. Seminars in Dialysis. 2000, 13(1): 30-35
11 Husted et al. BJN 2013, 94:1422-1428

DISCLOSURES

PFR GB and GAB are consultants to Reata Pharmaceuticals.
AMA, JAB, AR, LAL, DVR, KS and ALS receive research funding from Reata Pharmaceuticals.
MPC and CBJ are employees of Reata Pharmaceuticals.